Internal
problem
ID
[8258]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
6
SERIES
SOLUTIONS
OF
LINEAR
EQUATIONS.
6.3
SOLUTIONS
ABOUT
SINGULAR
POINTS.
EXERCISES
6.3.
Page
255
Problem
number
:
7
Date
solved
:
Sunday, March 30, 2025 at 12:50:07 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=8; ode:=(x^2+x-6)*diff(diff(y(x),x),x)+(x+3)*diff(y(x),x)+(x-2)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(x^2+x-6)*D[y[x],{x,2}]+(x+3)*D[y[x],x]+(x-2)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x - 2)*y(x) + (x + 3)*Derivative(y(x), x) + (x**2 + x - 6)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=8)