52.1.28 problem 25 expansion at 1

Internal problem ID [8245]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. Section 6.2 SOLUTIONS ABOUT ORDINARY POINTS. EXERCISES 6.2. Page 246
Problem number : 25 expansion at 1
Date solved : Sunday, March 30, 2025 at 12:49:36 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+y^{\prime }+5 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 1 \end{align*}

Maple. Time used: 0.027 (sec). Leaf size: 497
Order:=8; 
ode:=cos(x)*diff(diff(y(x),x),x)+diff(y(x),x)+5*y(x) = 0; 
dsolve(ode,y(x),type='series',x=1);
 
\[ \text {Expression too large to display} \]
Mathematica. Time used: 0.008 (sec). Leaf size: 1808
ode=Cos[x]*D[y[x],{x,2}]+D[y[x],x]+5*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,1,7}]
 

Too large to display

Sympy. Time used: 2.223 (sec). Leaf size: 299
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(5*y(x) + cos(x)*Derivative(y(x), (x, 2)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=1,n=8)
 
\[ y{\left (x \right )} = C_{2} \left (x - \frac {5 \left (x - 1\right )^{6}}{48 \cos ^{3}{\left (x + 1 \right )}} + \frac {\left (x - 1\right )^{6}}{36 \cos ^{4}{\left (x + 1 \right )}} - \frac {\left (x - 1\right )^{6}}{720 \cos ^{5}{\left (x + 1 \right )}} + \frac {5 \left (x - 1\right )^{5}}{24 \cos ^{2}{\left (x + 1 \right )}} - \frac {\left (x - 1\right )^{5}}{8 \cos ^{3}{\left (x + 1 \right )}} + \frac {\left (x - 1\right )^{5}}{120 \cos ^{4}{\left (x + 1 \right )}} + \frac {5 \left (x - 1\right )^{4}}{12 \cos ^{2}{\left (x + 1 \right )}} - \frac {\left (x - 1\right )^{4}}{24 \cos ^{3}{\left (x + 1 \right )}} - \frac {5 \left (x - 1\right )^{3}}{6 \cos {\left (x + 1 \right )}} + \frac {\left (x - 1\right )^{3}}{6 \cos ^{2}{\left (x + 1 \right )}} - \frac {\left (x - 1\right )^{2}}{2 \cos {\left (x + 1 \right )}} - 1\right ) + C_{1} \left (- \frac {25 \left (x - 1\right )^{6}}{144 \cos ^{3}{\left (x + 1 \right )}} + \frac {5 \left (x - 1\right )^{6}}{48 \cos ^{4}{\left (x + 1 \right )}} - \frac {\left (x - 1\right )^{6}}{144 \cos ^{5}{\left (x + 1 \right )}} - \frac {5 \left (x - 1\right )^{5}}{12 \cos ^{3}{\left (x + 1 \right )}} + \frac {\left (x - 1\right )^{5}}{24 \cos ^{4}{\left (x + 1 \right )}} + \frac {25 \left (x - 1\right )^{4}}{24 \cos ^{2}{\left (x + 1 \right )}} - \frac {5 \left (x - 1\right )^{4}}{24 \cos ^{3}{\left (x + 1 \right )}} + \frac {5 \left (x - 1\right )^{3}}{6 \cos ^{2}{\left (x + 1 \right )}} - \frac {5 \left (x - 1\right )^{2}}{2 \cos {\left (x + 1 \right )}} + 1\right ) + O\left (x^{8}\right ) \]