Internal
problem
ID
[8239]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
6
SERIES
SOLUTIONS
OF
LINEAR
EQUATIONS.
Section
6.2
SOLUTIONS
ABOUT
ORDINARY
POINTS.
EXERCISES
6.2.
Page
246
Problem
number
:
20
Date
solved
:
Sunday, March 30, 2025 at 12:49:25 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
Using series method with expansion around
With initial conditions
Order:=8; ode:=(1+x)*diff(diff(y(x),x),x)-(2-x)*diff(y(x),x)+y(x) = 0; ic:=y(0) = 2, D(y)(0) = -1; dsolve([ode,ic],y(x),type='series',x=0);
ode=(x+1)*D[y[x],{x,2}]-(2-x)*D[y[x],x]+y[x]==0; ic={y[0]==2,Derivative[1][y][0] ==-1}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x - 2)*Derivative(y(x), x) + (x + 1)*Derivative(y(x), (x, 2)) + y(x),0) ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): -1} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=8)