52.1.7 problem 6. series method

Internal problem ID [8224]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. Section 6.2 SOLUTIONS ABOUT ORDINARY POINTS. EXERCISES 6.2. Page 246
Problem number : 6. series method
Date solved : Sunday, March 30, 2025 at 12:49:03 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 46
Order:=8; 
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = y \left (0\right )+\left (x -x^{2}+\frac {2}{3} x^{3}-\frac {1}{3} x^{4}+\frac {2}{15} x^{5}-\frac {2}{45} x^{6}+\frac {4}{315} x^{7}\right ) y^{\prime }\left (0\right )+O\left (x^{8}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 51
ode=D[y[x],{x,2}]+2*D[y[x],x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
 
\[ y(x)\to c_2 \left (\frac {4 x^7}{315}-\frac {2 x^6}{45}+\frac {2 x^5}{15}-\frac {x^4}{3}+\frac {2 x^3}{3}-x^2+x\right )+c_1 \]
Sympy. Time used: 0.691 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=8)
 
\[ y{\left (x \right )} = C_{2} \left (- \frac {4 x^{5}}{15} + \frac {2 x^{4}}{3} - \frac {4 x^{3}}{3} + 2 x^{2} - 2 x + 1\right ) + C_{1} x + O\left (x^{8}\right ) \]