50.27.1 problem 2(a)

Internal problem ID [8182]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 10. Systems of First-Order Equations. Section 10.2 Linear Systems. Page 380
Problem number : 2(a)
Date solved : Sunday, March 30, 2025 at 12:47:49 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )+3 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=3 x \left (t \right )+y \left (t \right ) \end{align*}

Maple. Time used: 0.105 (sec). Leaf size: 34
ode:=[diff(x(t),t) = x(t)+3*y(t), diff(y(t),t) = 3*x(t)+y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_1 \,{\mathrm e}^{4 t}+c_2 \,{\mathrm e}^{-2 t} \\ y \left (t \right ) &= c_1 \,{\mathrm e}^{4 t}-c_2 \,{\mathrm e}^{-2 t} \\ \end{align*}
Mathematica. Time used: 0.004 (sec). Leaf size: 68
ode={D[x[t],t]==x[t]+3*y[t],D[y[t],t]==3*x[t]+y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{2} e^{-2 t} \left (c_1 \left (e^{6 t}+1\right )+c_2 \left (e^{6 t}-1\right )\right ) \\ y(t)\to \frac {1}{2} e^{-2 t} \left (c_1 \left (e^{6 t}-1\right )+c_2 \left (e^{6 t}+1\right )\right ) \\ \end{align*}
Sympy. Time used: 0.101 (sec). Leaf size: 31
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-x(t) - 3*y(t) + Derivative(x(t), t),0),Eq(-3*x(t) - y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - C_{1} e^{- 2 t} + C_{2} e^{4 t}, \ y{\left (t \right )} = C_{1} e^{- 2 t} + C_{2} e^{4 t}\right ] \]