Internal
problem
ID
[8142]
Book
:
Differential
Equations:
Theory,
Technique,
and
Practice
by
George
Simmons,
Steven
Krantz.
McGraw-Hill
NY.
2007.
1st
Edition.
Section
:
Chapter
4.
Power
Series
Solutions
and
Special
Functions.
Section
4.6.
Gauss
Hypergeometric
Equation.
Page
187
Problem
number
:
3
Date
solved
:
Sunday, March 30, 2025 at 12:46:33 PM
CAS
classification
:
[_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using series method with expansion around
Order:=8; ode:=(-x^2+1)*diff(diff(y(x),x),x)-x*diff(y(x),x)+p^2*y(x) = 0; dsolve(ode,y(x),type='series',x=1);
ode=(1-x^2)*D[y[x],{x,2}]-x*D[y[x],x]+p^2*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,1,7}]
Too large to display
from sympy import * x = symbols("x") p = symbols("p") y = Function("y") ode = Eq(p**2*y(x) - x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=1,n=8)