50.16.1 problem 1

Internal problem ID [8069]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Problems for Review and Discovery. Problems for Discussion and Exploration. Page 105
Problem number : 1
Date solved : Sunday, March 30, 2025 at 12:42:02 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }+y&=\cos \left (x \right ) \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=diff(y(x),x)+y(x) = cos(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\cos \left (x \right )}{2}+\frac {\sin \left (x \right )}{2}+{\mathrm e}^{-x} c_1 \]
Mathematica. Time used: 0.034 (sec). Leaf size: 23
ode=D[y[x],x]+y[x]==Cos[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} \left (\sin (x)+\cos (x)+2 c_1 e^{-x}\right ) \]
Sympy. Time used: 0.128 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - cos(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} + \frac {\sin {\left (x \right )}}{2} + \frac {\cos {\left (x \right )}}{2} \]