50.14.1 problem 1(a)

Internal problem ID [8039]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number : 1(a)
Date solved : Sunday, March 30, 2025 at 12:41:07 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-3 y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 24
ode:=diff(diff(y(x),x),x)-3*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{x \sqrt {5}}+c_2 \right ) {\mathrm e}^{-\frac {\left (\sqrt {5}-3\right ) x}{2}} \]
Mathematica. Time used: 0.022 (sec). Leaf size: 35
ode=D[y[x],{x,2}]-3*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-\frac {1}{2} \left (\sqrt {5}-3\right ) x} \left (c_2 e^{\sqrt {5} x}+c_1\right ) \]
Sympy. Time used: 0.165 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 3*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{\frac {x \left (3 - \sqrt {5}\right )}{2}} + C_{2} e^{\frac {x \left (\sqrt {5} + 3\right )}{2}} \]