50.9.25 problem 5(a)

Internal problem ID [7961]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number : 5(a)
Date solved : Sunday, March 30, 2025 at 12:39:16 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 23
ode:=x^2*diff(diff(y(x),x),x)+3*x*diff(y(x),x)+10*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \sin \left (3 \ln \left (x \right )\right )+c_2 \cos \left (3 \ln \left (x \right )\right )}{x} \]
Mathematica. Time used: 0.032 (sec). Leaf size: 26
ode=x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+10*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_2 \cos (3 \log (x))+c_1 \sin (3 \log (x))}{x} \]
Sympy. Time used: 0.190 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + 3*x*Derivative(y(x), x) + 10*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} \sin {\left (3 \log {\left (x \right )} \right )} + C_{2} \cos {\left (3 \log {\left (x \right )} \right )}}{x} \]