50.7.11 problem 3(a)

Internal problem ID [7915]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number : 3(a)
Date solved : Sunday, March 30, 2025 at 12:37:07 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{\prime \prime }&=1+{y^{\prime }}^{2} \end{align*}

Maple. Time used: 0.019 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x) = 1+diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\ln \left (c_1 \sin \left (x \right )-c_2 \cos \left (x \right )\right ) \]
Mathematica. Time used: 2.411 (sec). Leaf size: 16
ode=D[y[x],{x,2}]==1+(D[y[x],x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2-\log (\cos (x+c_1)) \]
Sympy. Time used: 1.154 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} + \frac {\log {\left (\tan ^{2}{\left (C_{2} - x \right )} + 1 \right )}}{2}, \ y{\left (x \right )} = C_{1} + \frac {\log {\left (\tan ^{2}{\left (C_{2} - x \right )} + 1 \right )}}{2}\right ] \]