50.7.3 problem 1(c)

Internal problem ID [7907]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number : 1(c)
Date solved : Sunday, March 30, 2025 at 12:36:47 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-k^{2} y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 18
ode:=diff(diff(y(x),x),x)-k^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-k x}+c_2 \,{\mathrm e}^{k x} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 23
ode=D[y[x],{x,2}]-k^2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^{k x}+c_2 e^{-k x} \]
Sympy. Time used: 0.076 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
k = symbols("k") 
y = Function("y") 
ode = Eq(-k**2*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- k x} + C_{2} e^{k x} \]