Internal
problem
ID
[7766]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
6.
Existence
and
uniqueness
of
solutions
to
systems
and
nth
order
equations.
Page
238
Problem
number
:
3
Date
solved
:
Sunday, March 30, 2025 at 12:23:02 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]
With initial conditions
ode:=diff(diff(y(x),x),x) = -1/2/diff(y(x),x)^2; ic:=y(0) = 1, D(y)(0) = -1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]==-1/(2*(D[y[x],x])^2); ic={y[0]==1,Derivative[1][y][0] ==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + 1/(2*Derivative(y(x), x)**2),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): -1} dsolve(ode,func=y(x),ics=ics)