49.22.12 problem 2(d)

Internal problem ID [7758]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number : 2(d)
Date solved : Sunday, March 30, 2025 at 12:22:48 PM
CAS classification : [_quadrature]

\begin{align*} {\mathrm e}^{y}+x \,{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime }&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 13
ode:=exp(y(x))+x*exp(y(x))+x*exp(y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -x -\ln \left (x \right )+c_1 \]
Mathematica. Time used: 0.017 (sec). Leaf size: 16
ode=(Exp[y[x]]+x*Exp[y[x]])+(x*Exp[y[x]])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -x-\log (x)-1+c_1 \]
Sympy. Time used: 0.222 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*exp(y(x))*Derivative(y(x), x) + x*exp(y(x)) + exp(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} - x - \log {\left (x \right )} \]