Internal
problem
ID
[7729]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
4.
Linear
equations
with
Regular
Singular
Points.
Page
166
Problem
number
:
3(f)
Date
solved
:
Sunday, March 30, 2025 at 12:20:10 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using series method with expansion around
Order:=8; ode:=x^2*diff(diff(y(x),x),x)-2*x^2*diff(y(x),x)+(4*x-2)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*D[y[x],{x,2}]-2*x^2*D[y[x],x]+(4*x-2)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**2*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) + (4*x - 2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)