Internal
problem
ID
[7707]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
4.
Linear
equations
with
Regular
Singular
Points.
Page
149
Problem
number
:
2(d)
Date
solved
:
Sunday, March 30, 2025 at 12:19:28 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-4*Pi*y(x) = x; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]-4*Pi*y[x]==x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - x - 4*pi*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)