Internal
problem
ID
[7703]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
4.
Linear
equations
with
Regular
Singular
Points.
Page
149
Problem
number
:
1(e)
Date
solved
:
Sunday, March 30, 2025 at 12:19:21 PM
CAS
classification
:
[[_3rd_order, _exact, _linear, _homogeneous]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+2*x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+2*x^2*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + 2*x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)