Internal
problem
ID
[7698]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
3.
Linear
equations
with
variable
coefficients.
Page
130
Problem
number
:
8
Date
solved
:
Sunday, March 30, 2025 at 12:19:12 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*alpha*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1-x^2)*D[y[x],{x,2}]-x*D[y[x],x]+\[Alpha]^2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") y = Function("y") ode = Eq(2*Alpha*y(x) - 2*x*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False