49.15.3 problem 1(c)

Internal problem ID [7689]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 3. Linear equations with variable coefficients. Page 130
Problem number : 1(c)
Date solved : Sunday, March 30, 2025 at 12:18:59 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} y^{\prime \prime }-x^{2} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 29
Order:=6; 
ode:=diff(diff(y(x),x),x)-x^2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {x^{4}}{12}\right ) y \left (0\right )+\left (x +\frac {1}{20} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 28
ode=D[y[x],{x,2}]-x^2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{20}+x\right )+c_1 \left (\frac {x^4}{12}+1\right ) \]
Sympy. Time used: 0.704 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{4}}{12} + 1\right ) + C_{1} x \left (\frac {x^{4}}{20} + 1\right ) + O\left (x^{6}\right ) \]