Internal
problem
ID
[7677]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
3.
Linear
equations
with
variable
coefficients.
Page
121
Problem
number
:
1(a)
Date
solved
:
Sunday, March 30, 2025 at 12:18:46 PM
CAS
classification
:
[[_Emden, _Fowler]]
Using reduction of order method given that one solution is
ode:=x^2*diff(diff(y(x),x),x)-7*x*diff(y(x),x)+15*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-7*x*D[y[x],x]+15*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 7*x*Derivative(y(x), x) + 15*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)