48.5.7 problem Problem 5.8

Internal problem ID [7572]
Book : THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section : Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page 360
Problem number : Problem 5.8
Date solved : Sunday, March 30, 2025 at 12:15:46 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=3 x_{1} \left (t \right )-x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=16 x_{1} \left (t \right )-5 x_{2} \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x_{1} \left (0\right ) = 1\\ x_{2} \left (0\right ) = 1 \end{align*}

Maple. Time used: 0.132 (sec). Leaf size: 27
ode:=[diff(x__1(t),t) = 3*x__1(t)-x__2(t), diff(x__2(t),t) = 16*x__1(t)-5*x__2(t)]; 
ic:=x__1(0) = 1x__2(0) = 1; 
dsolve([ode,ic]);
 
\begin{align*} x_{1} \left (t \right ) &= {\mathrm e}^{-t} \left (3 t +1\right ) \\ x_{2} \left (t \right ) &= {\mathrm e}^{-t} \left (12 t +1\right ) \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 30
ode={D[ x1[t],t]==3*x1[t]-x2[t],D[ x2[t],t]==16*x1[t]-5*x2[t]}; 
ic={x1[0]==1,x2[0]==1}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to e^{-t} (3 t+1) \\ \text {x2}(t)\to e^{-t} (12 t+1) \\ \end{align*}
Sympy. Time used: 0.109 (sec). Leaf size: 36
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-3*x__1(t) + x__2(t) + Derivative(x__1(t), t),0),Eq(-16*x__1(t) + 5*x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = 4 C_{1} t e^{- t} + \left (C_{1} + 4 C_{2}\right ) e^{- t}, \ x^{2}{\left (t \right )} = 16 C_{1} t e^{- t} + 16 C_{2} e^{- t}\right ] \]