48.5.5 problem Problem 5.6

Internal problem ID [7570]
Book : THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section : Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page 360
Problem number : Problem 5.6
Date solved : Sunday, March 30, 2025 at 12:15:43 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=-2 x_{1} \left (t \right )+x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )-2 x_{2} \left (t \right ) \end{align*}

Maple. Time used: 0.116 (sec). Leaf size: 34
ode:=[diff(x__1(t),t) = -2*x__1(t)+x__2(t), diff(x__2(t),t) = x__1(t)-2*x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= c_1 \,{\mathrm e}^{-3 t}+c_2 \,{\mathrm e}^{-t} \\ x_{2} \left (t \right ) &= -c_1 \,{\mathrm e}^{-3 t}+c_2 \,{\mathrm e}^{-t} \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 68
ode={D[ x1[t],t]==-2*x1[t]+x2[t],D[ x2[t],t]==x1[t]-2*x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{2} e^{-3 t} \left (c_1 \left (e^{2 t}+1\right )+c_2 \left (e^{2 t}-1\right )\right ) \\ \text {x2}(t)\to \frac {1}{2} e^{-3 t} \left (c_1 \left (e^{2 t}-1\right )+c_2 \left (e^{2 t}+1\right )\right ) \\ \end{align*}
Sympy. Time used: 0.110 (sec). Leaf size: 27
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(2*x__1(t) - x__2(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) + 2*x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = - C_{1} e^{- 3 t} + C_{2} e^{- t}, \ x^{2}{\left (t \right )} = C_{1} e^{- 3 t} + C_{2} e^{- t}\right ] \]