Internal
problem
ID
[7560]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.6
Summary
and
Problems.
Page
218
Problem
number
:
Problem
3.31
Date
solved
:
Sunday, March 30, 2025 at 12:15:06 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=x^2+y(x)^2-2*x*y(x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2+y[x]^2)-2*x*y[x]*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 - 2*x*y(x)*Derivative(y(x), x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)