48.4.12 problem Problem 3.19

Internal problem ID [7554]
Book : THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section : Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems. Page 218
Problem number : Problem 3.19
Date solved : Sunday, March 30, 2025 at 12:14:55 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} a^{2} y^{\prime \prime \prime \prime }&=y^{\prime \prime } \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 26
ode:=a^2*diff(diff(diff(diff(y(x),x),x),x),x) = diff(diff(y(x),x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 x +c_3 \,{\mathrm e}^{-\frac {x}{a}}+c_4 \,{\mathrm e}^{\frac {x}{a}} \]
Mathematica. Time used: 0.077 (sec). Leaf size: 38
ode=a^2*D[y[x],{x,4}]==D[y[x],{x,2}]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to a^2 e^{-\frac {x}{a}} \left (c_1 e^{\frac {2 x}{a}}+c_2\right )+c_4 x+c_3 \]
Sympy. Time used: 0.105 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a**2*Derivative(y(x), (x, 4)) - Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x + C_{3} e^{- \frac {x}{a}} + C_{4} e^{\frac {x}{a}} \]