48.4.6 problem Problem 3.7
Internal
problem
ID
[7548]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.6
Summary
and
Problems.
Page
218
Problem
number
:
Problem
3.7
Date
solved
:
Sunday, March 30, 2025 at 12:14:20 PM
CAS
classification
:
[_rational]
\begin{align*} 2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime }&=0 \end{align*}
✓ Maple. Time used: 0.007 (sec). Leaf size: 357
ode:=2*x^3*y(x)^2-y(x)+(2*x^2*y(x)^3-x)*diff(y(x),x) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= -\frac {12^{{1}/{3}} \left (-{\left (\left (-9+\sqrt {12 x^{8}-36 c_1 \,x^{6}+36 c_1^{2} x^{4}-12 c_1^{3} x^{2}+81}\right ) x^{2}\right )}^{{2}/{3}}+x^{2} 12^{{1}/{3}} \left (x^{2}-c_1 \right )\right )}{6 {\left (\left (-9+\sqrt {12 x^{8}-36 c_1 \,x^{6}+36 c_1^{2} x^{4}-12 c_1^{3} x^{2}+81}\right ) x^{2}\right )}^{{1}/{3}} x} \\
y &= -\frac {\left (\left (1+i \sqrt {3}\right ) {\left (\left (-9+\sqrt {12 x^{8}-36 c_1 \,x^{6}+36 c_1^{2} x^{4}-12 c_1^{3} x^{2}+81}\right ) x^{2}\right )}^{{2}/{3}}+\left (i 3^{{5}/{6}}-3^{{1}/{3}}\right ) \left (x^{2}-c_1 \right ) x^{2} 2^{{2}/{3}}\right ) 2^{{2}/{3}} 3^{{1}/{3}}}{12 {\left (\left (-9+\sqrt {12 x^{8}-36 c_1 \,x^{6}+36 c_1^{2} x^{4}-12 c_1^{3} x^{2}+81}\right ) x^{2}\right )}^{{1}/{3}} x} \\
y &= \frac {\left (\left (i \sqrt {3}-1\right ) {\left (\left (-9+\sqrt {12 x^{8}-36 c_1 \,x^{6}+36 c_1^{2} x^{4}-12 c_1^{3} x^{2}+81}\right ) x^{2}\right )}^{{2}/{3}}+\left (i 3^{{5}/{6}}+3^{{1}/{3}}\right ) \left (x^{2}-c_1 \right ) x^{2} 2^{{2}/{3}}\right ) 2^{{2}/{3}} 3^{{1}/{3}}}{12 {\left (\left (-9+\sqrt {12 x^{8}-36 c_1 \,x^{6}+36 c_1^{2} x^{4}-12 c_1^{3} x^{2}+81}\right ) x^{2}\right )}^{{1}/{3}} x} \\
\end{align*}
✓ Mathematica. Time used: 45.878 (sec). Leaf size: 358
ode=(2*x^3*y[x]^2-y[x])+(2*x^2*y[x]^3-x)*D[y[x],x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to \frac {\sqrt [3]{2} \left (-x^3+c_1 x\right )}{\sqrt [3]{-27 x^2+\sqrt {729 x^4+108 x^3 \left (x^3-c_1 x\right ){}^3}}}+\frac {\sqrt [3]{-27 x^2+\sqrt {729 x^4+108 x^3 \left (x^3-c_1 x\right ){}^3}}}{3 \sqrt [3]{2} x} \\
y(x)\to \frac {\left (1+i \sqrt {3}\right ) \left (x^3-c_1 x\right )}{2^{2/3} \sqrt [3]{-27 x^2+\sqrt {729 x^4+108 x^3 \left (x^3-c_1 x\right ){}^3}}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{-27 x^2+\sqrt {729 x^4+108 x^3 \left (x^3-c_1 x\right ){}^3}}}{6 \sqrt [3]{2} x} \\
y(x)\to \frac {\left (1-i \sqrt {3}\right ) \left (x^3-c_1 x\right )}{2^{2/3} \sqrt [3]{-27 x^2+\sqrt {729 x^4+108 x^3 \left (x^3-c_1 x\right ){}^3}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-27 x^2+\sqrt {729 x^4+108 x^3 \left (x^3-c_1 x\right ){}^3}}}{6 \sqrt [3]{2} x} \\
\end{align*}
✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(2*x**3*y(x)**2 + (2*x**2*y(x)**3 - x)*Derivative(y(x), x) - y(x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
Timed Out