Internal
problem
ID
[7521]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.3
SECOND
ORDER
ODE.
Page
147
Problem
number
:
Example
3.22
Date
solved
:
Sunday, March 30, 2025 at 12:13:29 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-3*diff(y(x),x)+2*y(x) = x*exp(2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-3*D[y[x],x]+2*y[x]==x*Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*exp(2*x) + 2*y(x) - 3*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)