Internal
problem
ID
[7506]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.2
FIRST
ORDER
ODE.
Page
114
Problem
number
:
Example
3.5
Date
solved
:
Sunday, March 30, 2025 at 12:11:24 PM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=diff(y(x),x) = (-1+x+y(x))/(x-y(x)+3); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(x+y[x]-1)/(x-y[x]+3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x + y(x) - 1)/(x - y(x) + 3),0) ics = {} dsolve(ode,func=y(x),ics=ics)