Internal
problem
ID
[7497]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
2.
Linear
homogeneous
equations.
Section
2.3.4
problems.
page
104
Problem
number
:
8
Date
solved
:
Sunday, March 30, 2025 at 12:10:46 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*(ln(x)-1)*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = x*(1-ln(x))^2; dsolve(ode,y(x), singsol=all);
ode=x^2*(Log[x]-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==x*(1-Log[x])^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(log(x) - 1)*Derivative(y(x), (x, 2)) - x*(1 - log(x))**2 - x*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*log(x)*Derivative(y(x), (x, 2)) + x*Derivative(y(x), (x, 2)) + log(x)**2 - 2*log(x) + Derivative(y(x), x) + 1 - y(x)/x cannot be solved by the factorable group method