47.4.9 problem 57

Internal problem ID [7486]
Book : Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section : Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number : 57
Date solved : Sunday, March 30, 2025 at 12:10:24 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \end{align*}

Maple
ode:=diff(diff(y(x),x),x)+x*(1-x)*diff(y(x),x)+exp(x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],{x,2}]+x*(1-x)*D[y[x],x]+Exp[x]*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(1 - x)*Derivative(y(x), x) + y(x)*exp(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False