Internal
problem
ID
[7484]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
2.
Linear
homogeneous
equations.
Section
2.2
problems.
page
95
Problem
number
:
55
Date
solved
:
Sunday, March 30, 2025 at 12:10:20 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
ode:=(-x^2+1)*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1-x^2)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False