Internal
problem
ID
[7480]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
2.
Linear
homogeneous
equations.
Section
2.2
problems.
page
95
Problem
number
:
51
Date
solved
:
Sunday, March 30, 2025 at 12:10:12 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=(x^2+1)*diff(diff(y(x),x),x)+x*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2+1)*D[y[x],{x,2}]+x*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False