Internal
problem
ID
[7475]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.3.
Exact
equations
problems.
page
24
Problem
number
:
2
Date
solved
:
Sunday, March 30, 2025 at 12:09:55 PM
CAS
classification
:
[_exact, [_1st_order, `_with_symmetry_[F(x),G(y)]`]]
ode:=y(x)/x+(y(x)^3+ln(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x]/x+(y[x]^3+Log[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((y(x)**3 + log(x))*Derivative(y(x), x) + y(x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)