47.2.48 problem 44

Internal problem ID [7464]
Book : Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section : Chapter 1. First order differential equations. Section 1.2 Homogeneous equations problems. page 12
Problem number : 44
Date solved : Sunday, March 30, 2025 at 12:09:29 PM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y+x \left (2 x y+1\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 18
ode:=y(x)+x*(2*x*y(x)+1)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{2 \operatorname {LambertW}\left (\frac {c_1}{2 x}\right ) x} \]
Mathematica. Time used: 60.495 (sec). Leaf size: 36
ode=y[x]+x*(2*x*y[x]+1)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2 x W\left (\frac {e^{\frac {1}{2} \left (-2-9 \sqrt [3]{-2} c_1\right )}}{x}\right )} \]
Sympy. Time used: 0.721 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(2*x*y(x) + 1)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{C_{1} + W\left (\frac {e^{- C_{1}}}{2 x}\right )} \]