47.1.22 problem 22

Internal problem ID [7403]
Book : Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section : Chapter 1. First order differential equations. Section 1.1 Separable equations problems. page 7
Problem number : 22
Date solved : Sunday, March 30, 2025 at 11:57:34 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {\sqrt {y}}{\sqrt {x}} \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 16
ode:=diff(y(x),x) = y(x)^(1/2)/x^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ \sqrt {y}-\sqrt {x}-c_1 = 0 \]
Mathematica. Time used: 0.142 (sec). Leaf size: 26
ode=D[y[x],x]==Sqrt[y[x]]/Sqrt[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{4} \left (2 \sqrt {x}+c_1\right ){}^2 \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.239 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - sqrt(y(x))/sqrt(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}^{2}}{4} + C_{1} \sqrt {x} + x \]