Internal
problem
ID
[7370]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.3,
page
224
Problem
number
:
26
Date
solved
:
Sunday, March 30, 2025 at 11:55:33 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+2*diff(y(t),t)+5*y(t) = piecewise(0 < t and t < 2*Pi,10*sin(t),2*Pi < t,0); ic:=y(Pi) = 1, D(y)(Pi) = 2*exp(-Pi)-2; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+2*D[y[t],t]+5*y[t]==Piecewise[{{10*Sin[t],0<t<2*Pi},{0,t>2*Pi}}]; ic={y[Pi]==1,Derivative[1][y][Pi]==2*Exp[-Pi]-2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((10*sin(t), (t > 0) & (t < 2*pi)), (0, t > 2*pi)) + 5*y(t) + 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(pi): 1, Subs(Derivative(y(t), t), t, pi): -2 + 2*exp(-pi)} dsolve(ode,func=y(t),ics=ics)