46.3.5 problem 7

Internal problem ID [7326]
Book : ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section : Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.4. Bessels Equation page 195
Problem number : 7
Date solved : Sunday, March 30, 2025 at 11:54:26 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (x^{2}-1\right ) y}{4}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.021 (sec). Leaf size: 34
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+1/4*(x^2-1)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_1 x \left (1-\frac {1}{24} x^{2}+\frac {1}{1920} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (1-\frac {1}{8} x^{2}+\frac {1}{384} x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{\sqrt {x}} \]
Mathematica. Time used: 0.011 (sec). Leaf size: 58
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+1/4*(x^2-1)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {x^{7/2}}{384}-\frac {x^{3/2}}{8}+\frac {1}{\sqrt {x}}\right )+c_2 \left (\frac {x^{9/2}}{1920}-\frac {x^{5/2}}{24}+\sqrt {x}\right ) \]
Sympy. Time used: 0.996 (sec). Leaf size: 42
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (x**2 - 1)*y(x)/4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \sqrt {x} \left (\frac {x^{4}}{1920} - \frac {x^{2}}{24} + 1\right ) + \frac {C_{1} \left (\frac {x^{4}}{384} - \frac {x^{2}}{8} + 1\right )}{\sqrt {x}} + O\left (x^{6}\right ) \]