45.2.19 problem 19

Internal problem ID [7242]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page 239
Problem number : 19
Date solved : Sunday, March 30, 2025 at 11:52:14 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} 3 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.023 (sec). Leaf size: 44
Order:=6; 
ode:=3*x*diff(diff(y(x),x),x)+(2-x)*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{{1}/{3}} \left (1+\frac {1}{3} x +\frac {1}{18} x^{2}+\frac {1}{162} x^{3}+\frac {1}{1944} x^{4}+\frac {1}{29160} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (1+\frac {1}{2} x +\frac {1}{10} x^{2}+\frac {1}{80} x^{3}+\frac {1}{880} x^{4}+\frac {1}{12320} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]
Mathematica. Time used: 0.005 (sec). Leaf size: 85
ode=3*x*D[y[x],{x,2}]+(2-x)*D[y[x],x]-y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \sqrt [3]{x} \left (\frac {x^5}{29160}+\frac {x^4}{1944}+\frac {x^3}{162}+\frac {x^2}{18}+\frac {x}{3}+1\right )+c_2 \left (\frac {x^5}{12320}+\frac {x^4}{880}+\frac {x^3}{80}+\frac {x^2}{10}+\frac {x}{2}+1\right ) \]
Sympy. Time used: 1.069 (sec). Leaf size: 60
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x*Derivative(y(x), (x, 2)) + (2 - x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{5}}{12320} + \frac {x^{4}}{880} + \frac {x^{3}}{80} + \frac {x^{2}}{10} + \frac {x}{2} + 1\right ) + C_{1} \sqrt [3]{x} \left (\frac {x^{4}}{1944} + \frac {x^{3}}{162} + \frac {x^{2}}{18} + \frac {x}{3} + 1\right ) + O\left (x^{6}\right ) \]