Internal
problem
ID
[7233]
Book
:
A
FIRST
COURSE
IN
DIFFERENTIAL
EQUATIONS
with
Modeling
Applications.
Dennis
G.
Zill.
9th
edition.
Brooks/Cole.
CA,
USA.
Section
:
Chapter
6.
SERIES
SOLUTIONS
OF
LINEAR
EQUATIONS.
Exercises.
6.2
page
239
Problem
number
:
10
Date
solved
:
Sunday, March 30, 2025 at 11:51:59 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(x^3-2*x^2+3*x)^2*diff(diff(y(x),x),x)+x*(x-3)^2*diff(y(x),x)-(1+x)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(x^3-2*x^2+3*x)^2*D[y[x],{x,2}]+x*(x-3)^2*D[y[x],x]-(x+1)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x - 3)**2*Derivative(y(x), x) - (x + 1)*y(x) + (x**3 - 2*x**2 + 3*x)**2*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)