44.6.51 problem 52 (a)

Internal problem ID [7195]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.3 Linear equations. Exercises 2.3 at page 63
Problem number : 52 (a)
Date solved : Sunday, March 30, 2025 at 11:50:57 AM
CAS classification : [_linear]

\begin{align*} x y^{\prime }-4 y&=x^{6} {\mathrm e}^{x} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.036 (sec). Leaf size: 16
ode:=x*diff(y(x),x)-4*y(x) = x^6*exp(x); 
ic:=y(0) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \left (\left (x -1\right ) {\mathrm e}^{x}+c_1 \right ) x^{4} \]
Mathematica. Time used: 0.096 (sec). Leaf size: 19
ode=x*D[y[x],x]-4*y[x]==x^6*Exp[x]; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x^4 \left (e^x (x-1)+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**6*exp(x) + x*Derivative(y(x), x) - 4*y(x),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Couldnt solve for initial conditions