44.6.35 problem 35

Internal problem ID [7179]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.3 Linear equations. Exercises 2.3 at page 63
Problem number : 35
Date solved : Sunday, March 30, 2025 at 11:50:18 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }-\sin \left (x \right ) y&=2 \sin \left (x \right ) \end{align*}

With initial conditions

\begin{align*} y \left (\frac {\pi }{2}\right )&=1 \end{align*}

Maple. Time used: 0.023 (sec). Leaf size: 13
ode:=diff(y(x),x)-sin(x)*y(x) = 2*sin(x); 
ic:=y(1/2*Pi) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = -2+3 \,{\mathrm e}^{-\cos \left (x \right )} \]
Mathematica. Time used: 0.057 (sec). Leaf size: 15
ode=D[y[x],x]-Sin[x]*y[x]==2*Sin[x]; 
ic={y[Pi/2]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 3 e^{-\cos (x)}-2 \]
Sympy. Time used: 0.430 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)*sin(x) - 2*sin(x) + Derivative(y(x), x),0) 
ics = {y(pi/2): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = -2 + 3 e^{- \cos {\left (x \right )}} \]