44.6.19 problem 19

Internal problem ID [7163]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.3 Linear equations. Exercises 2.3 at page 63
Problem number : 19
Date solved : Sunday, March 30, 2025 at 11:49:39 AM
CAS classification : [_linear]

\begin{align*} \left (x +1\right ) y^{\prime }+\left (x +2\right ) y&=2 x \,{\mathrm e}^{-x} \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=(1+x)*diff(y(x),x)+(x+2)*y(x) = 2*x*exp(-x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (x^{2}+c_1 \right ) {\mathrm e}^{-x}}{x +1} \]
Mathematica. Time used: 0.069 (sec). Leaf size: 22
ode=(x+1)*D[y[x],x]+(x+2)*y[x]==2*x*Exp[-x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {e^{-x} \left (x^2+c_1\right )}{x+1} \]
Sympy. Time used: 0.385 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*exp(-x) + (x + 1)*Derivative(y(x), x) + (x + 2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\left (C_{1} + x^{2}\right ) e^{- x}}{x + 1} \]