Internal
problem
ID
[7159]
Book
:
A
First
Course
in
Differential
Equations
with
Modeling
Applications
by
Dennis
G.
Zill.
12
ed.
Metric
version.
2024.
Cengage
learning.
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.3
Linear
equations.
Exercises
2.3
at
page
63
Problem
number
:
15
Date
solved
:
Sunday, March 30, 2025 at 11:49:25 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
\begin{align*}
y(x)\to -\frac {\sqrt {\frac {c_1{}^2}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}}+\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-c_1}}{\sqrt {6}} \\
y(x)\to \frac {\sqrt {\frac {c_1{}^2}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}}+\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-c_1}}{\sqrt {6}} \\
y(x)\to -\frac {\sqrt {-\frac {i \left (\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}+c_1\right ) \left (\left (\sqrt {3}-i\right ) \sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-\left (\sqrt {3}+i\right ) c_1\right )}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {x \left (27 x-c_1{}^3\right )}-c_1{}^3}}}}{2 \sqrt {3}} \\
y(x)\to \frac {\sqrt {-\frac {i \left (\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}+c_1\right ) \left (\left (\sqrt {3}-i\right ) \sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-\left (\sqrt {3}+i\right ) c_1\right )}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {x \left (27 x-c_1{}^3\right )}-c_1{}^3}}}}{2 \sqrt {3}} \\
y(x)\to -\frac {\sqrt {\frac {i \left (\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}+c_1\right ) \left (\left (\sqrt {3}+i\right ) \sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-\left (\sqrt {3}-i\right ) c_1\right )}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {x \left (27 x-c_1{}^3\right )}-c_1{}^3}}}}{2 \sqrt {3}} \\
y(x)\to \frac {\sqrt {\frac {i \left (\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}+c_1\right ) \left (\left (\sqrt {3}+i\right ) \sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-\left (\sqrt {3}-i\right ) c_1\right )}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {x \left (27 x-c_1{}^3\right )}-c_1{}^3}}}}{2 \sqrt {3}} \\
y(x)\to 0 \\
\end{align*}