44.6.15 problem 15

Internal problem ID [7159]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.3 Linear equations. Exercises 2.3 at page 63
Problem number : 15
Date solved : Sunday, March 30, 2025 at 11:49:25 AM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} y-4 \left (x +y^{6}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 989
ode:=y(x)-4*(x+y(x)^6)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 35.293 (sec). Leaf size: 827
ode=y[x]-4*(x+y[x]^6)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {\frac {c_1{}^2}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}}+\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-c_1}}{\sqrt {6}} \\ y(x)\to \frac {\sqrt {\frac {c_1{}^2}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}}+\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-c_1}}{\sqrt {6}} \\ y(x)\to -\frac {\sqrt {-\frac {i \left (\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}+c_1\right ) \left (\left (\sqrt {3}-i\right ) \sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-\left (\sqrt {3}+i\right ) c_1\right )}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {x \left (27 x-c_1{}^3\right )}-c_1{}^3}}}}{2 \sqrt {3}} \\ y(x)\to \frac {\sqrt {-\frac {i \left (\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}+c_1\right ) \left (\left (\sqrt {3}-i\right ) \sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-\left (\sqrt {3}+i\right ) c_1\right )}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {x \left (27 x-c_1{}^3\right )}-c_1{}^3}}}}{2 \sqrt {3}} \\ y(x)\to -\frac {\sqrt {\frac {i \left (\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}+c_1\right ) \left (\left (\sqrt {3}+i\right ) \sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-\left (\sqrt {3}-i\right ) c_1\right )}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {x \left (27 x-c_1{}^3\right )}-c_1{}^3}}}}{2 \sqrt {3}} \\ y(x)\to \frac {\sqrt {\frac {i \left (\sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}+c_1\right ) \left (\left (\sqrt {3}+i\right ) \sqrt [3]{54 x+6 \sqrt {3} \sqrt {-x \left (-27 x+c_1{}^3\right )}-c_1{}^3}-\left (\sqrt {3}-i\right ) c_1\right )}{\sqrt [3]{54 x+6 \sqrt {3} \sqrt {x \left (27 x-c_1{}^3\right )}-c_1{}^3}}}}{2 \sqrt {3}} \\ y(x)\to 0 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-4*x - 4*y(x)**6)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out