44.5.66 problem 56

Internal problem ID [7128]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.2 Separable equations. Exercises 2.2 at page 53
Problem number : 56
Date solved : Sunday, March 30, 2025 at 11:47:59 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=x \sqrt {y} \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 16
ode:=diff(y(x),x) = x*y(x)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ \sqrt {y}-\frac {x^{2}}{4}-c_1 = 0 \]
Mathematica. Time used: 0.122 (sec). Leaf size: 24
ode=D[y[x],x]==x*Sqrt[y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{16} \left (x^2+2 c_1\right ){}^2 \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.227 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*sqrt(y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}^{2}}{4} + \frac {C_{1} x^{2}}{4} + \frac {x^{4}}{16} \]