44.5.39 problem 39 (a 1)

Internal problem ID [7101]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.2 Separable equations. Exercises 2.2 at page 53
Problem number : 39 (a 1)
Date solved : Sunday, March 30, 2025 at 11:42:16 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y^{2}-4 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2 \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 5
ode:=diff(y(x),x) = y(x)^2-4; 
ic:=y(0) = 2; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = 2 \]
Mathematica. Time used: 0.001 (sec). Leaf size: 6
ode=D[y[x],x]==y[x]^2-4; 
ic={y[0]==2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 2 \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**2 + Derivative(y(x), x) + 4,0) 
ics = {y(0): 2} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Couldnt solve for initial conditions