Internal
problem
ID
[7090]
Book
:
A
First
Course
in
Differential
Equations
with
Modeling
Applications
by
Dennis
G.
Zill.
12
ed.
Metric
version.
2024.
Cengage
learning.
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.2
Separable
equations.
Exercises
2.2
at
page
53
Problem
number
:
28
Date
solved
:
Sunday, March 30, 2025 at 11:40:23 AM
CAS
classification
:
[_separable]
With initial conditions
ode:=(x^4+1)*diff(y(x),x)+x*(1+4*y(x)^2) = 0; ic:=y(1) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=(1+x^4)*D[y[x],x]+x*(1+4*y[x]^2)==0; ic={y[1]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(4*y(x)**2 + 1) + (x**4 + 1)*Derivative(y(x), x),0) ics = {y(1): 0} dsolve(ode,func=y(x),ics=ics)