44.4.8 problem 2 (d)

Internal problem ID [7021]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 2 (d)
Date solved : Sunday, March 30, 2025 at 11:34:20 AM
CAS classification : [`y=_G(x,y')`]

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \end{align*}

With initial conditions

\begin{align*} y \left (8\right )&=-4 \end{align*}

Maple
ode:=diff(y(x),x) = exp(-1/100*x*y(x)^2); 
ic:=y(8) = -4; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],x]==Exp[-1/100*x*y[x]^2]; 
ic={y[8]==-4}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - exp(-x*y(x)**2/100),0) 
ics = {y(8): -4} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - exp(-x*y(x)**2/100) cannot be solved by the lie group method