44.4.1 problem 1 (a)

Internal problem ID [7014]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 1 (a)
Date solved : Sunday, March 30, 2025 at 11:34:01 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=x^{2}-y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (-2\right )&=1 \end{align*}

Maple. Time used: 0.129 (sec). Leaf size: 84
ode:=diff(y(x),x) = x^2-y(x)^2; 
ic:=y(-2) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = -\frac {2 x \left (\left (\frac {\operatorname {BesselK}\left (\frac {1}{4}, 2\right )}{2}-\operatorname {BesselK}\left (\frac {3}{4}, 2\right )\right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right ) \left (\operatorname {BesselI}\left (-\frac {3}{4}, 2\right )+\frac {\operatorname {BesselI}\left (\frac {1}{4}, 2\right )}{2}\right )\right )}{\left (2 \operatorname {BesselK}\left (\frac {3}{4}, 2\right )-\operatorname {BesselK}\left (\frac {1}{4}, 2\right )\right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+2 \left (\operatorname {BesselI}\left (-\frac {3}{4}, 2\right )+\frac {\operatorname {BesselI}\left (\frac {1}{4}, 2\right )}{2}\right ) \operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} \]
Mathematica. Time used: 0.115 (sec). Leaf size: 235
ode=D[y[x],x]==x^2-y[x]^2; 
ic={y[-2]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {x^2 \left (-4 i \operatorname {BesselJ}\left (-\frac {5}{4},2 i\right )-5 \operatorname {BesselJ}\left (-\frac {1}{4},2 i\right )+4 i \operatorname {BesselJ}\left (\frac {3}{4},2 i\right )\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i x^2}{2}\right )+2 x^2 \left (2 i \operatorname {BesselJ}\left (-\frac {3}{4},2 i\right )+\operatorname {BesselJ}\left (\frac {1}{4},2 i\right )\right ) \operatorname {BesselJ}\left (-\frac {5}{4},\frac {i x^2}{2}\right )+2 \left (2 \operatorname {BesselJ}\left (-\frac {3}{4},2 i\right )-i \operatorname {BesselJ}\left (\frac {1}{4},2 i\right )\right ) \left (\operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )-i x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {i x^2}{2}\right )\right )}{x \left (\left (8 \operatorname {BesselJ}\left (-\frac {3}{4},2 i\right )-4 i \operatorname {BesselJ}\left (\frac {1}{4},2 i\right )\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )+\left (-4 \operatorname {BesselJ}\left (-\frac {5}{4},2 i\right )+5 i \operatorname {BesselJ}\left (-\frac {1}{4},2 i\right )+4 \operatorname {BesselJ}\left (\frac {3}{4},2 i\right )\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {i x^2}{2}\right )\right )} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 + y(x)**2 + Derivative(y(x), x),0) 
ics = {y(-2): 1} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list