44.2.46 problem 48
Internal
problem
ID
[6978]
Book
:
A
First
Course
in
Differential
Equations
with
Modeling
Applications
by
Dennis
G.
Zill.
12
ed.
Metric
version.
2024.
Cengage
learning.
Section
:
Chapter
1.
Introduction
to
differential
equations.
Section
1.2
Initial
value
problems.
Exercises
1.2
at
page
19
Problem
number
:
48
Date
solved
:
Sunday, March 30, 2025 at 11:32:41 AM
CAS
classification
:
[[_Riccati, _special]]
\begin{align*} y^{\prime }&=x^{2}+y^{2} \end{align*}
With initial conditions
\begin{align*} y \left (0\right )&=1 \end{align*}
✓ Maple. Time used: 0.423 (sec). Leaf size: 139
ode:=diff(y(x),x) = x^2+y(x)^2;
ic:=y(0) = 1;
dsolve([ode,ic],y(x), singsol=all);
\[
y = -\left (\left \{\begin {array}{cc} \frac {\left (\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \left (\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right )-\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}\right ) x}{\left (\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right ) \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )-\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}} & x <0 \\ -1 & x =0 \\ \frac {\left (\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}+\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \left (-\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right )\right ) x}{\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}+\left (-\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right ) \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} & 0<x \end {array}\right .\right )
\]
✓ Mathematica. Time used: 2.37 (sec). Leaf size: 114
ode=D[y[x],x]==x^2+y[x]^2;
ic={y[0] == 1};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\[
y(x)\to \frac {\operatorname {Gamma}\left (\frac {3}{4}\right ) \left (x^2 \operatorname {BesselJ}\left (-\frac {5}{4},\frac {x^2}{2}\right )-x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {x^2}{2}\right )+\operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )\right )-x^2 \operatorname {Gamma}\left (\frac {1}{4}\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {x^2}{2}\right )}{x \left (\operatorname {Gamma}\left (\frac {1}{4}\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {x^2}{2}\right )-2 \operatorname {Gamma}\left (\frac {3}{4}\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )\right )}
\]
✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-x**2 - y(x)**2 + Derivative(y(x), x),0)
ics = {y(0): 1}
dsolve(ode,func=y(x),ics=ics)
TypeError : bad operand type for unary -: list