44.2.46 problem 48

Internal problem ID [6978]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Section 1.2 Initial value problems. Exercises 1.2 at page 19
Problem number : 48
Date solved : Sunday, March 30, 2025 at 11:32:41 AM
CAS classification : [[_Riccati, _special]]

\begin{align*} y^{\prime }&=x^{2}+y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \end{align*}

Maple. Time used: 0.423 (sec). Leaf size: 139
ode:=diff(y(x),x) = x^2+y(x)^2; 
ic:=y(0) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = -\left (\left \{\begin {array}{cc} \frac {\left (\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \left (\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right )-\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}\right ) x}{\left (\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right ) \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )-\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}} & x <0 \\ -1 & x =0 \\ \frac {\left (\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}+\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \left (-\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right )\right ) x}{\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}+\left (-\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right ) \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} & 0<x \end {array}\right .\right ) \]
Mathematica. Time used: 2.37 (sec). Leaf size: 114
ode=D[y[x],x]==x^2+y[x]^2; 
ic={y[0] == 1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\operatorname {Gamma}\left (\frac {3}{4}\right ) \left (x^2 \operatorname {BesselJ}\left (-\frac {5}{4},\frac {x^2}{2}\right )-x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {x^2}{2}\right )+\operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )\right )-x^2 \operatorname {Gamma}\left (\frac {1}{4}\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {x^2}{2}\right )}{x \left (\operatorname {Gamma}\left (\frac {1}{4}\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {x^2}{2}\right )-2 \operatorname {Gamma}\left (\frac {3}{4}\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )\right )} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - y(x)**2 + Derivative(y(x), x),0) 
ics = {y(0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list