43.2.4 problem 7.3.6

Internal problem ID [6861]
Book : Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section : Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number : 7.3.6
Date solved : Sunday, March 30, 2025 at 11:24:42 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 2 x y^{\prime \prime }+y^{\prime }-x^{2} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.030 (sec). Leaf size: 28
Order:=6; 
ode:=2*x*diff(diff(y(x),x),x)+diff(y(x),x)-x^2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \sqrt {x}\, \left (1+\frac {1}{21} x^{3}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (1+\frac {1}{15} x^{3}+\operatorname {O}\left (x^{6}\right )\right ) \]
Mathematica. Time used: 0.004 (sec). Leaf size: 33
ode=2*x*D[y[x],{x,2}]+D[y[x],x]-x^2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \sqrt {x} \left (\frac {x^3}{21}+1\right )+c_2 \left (\frac {x^3}{15}+1\right ) \]
Sympy. Time used: 0.951 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*y(x) + 2*x*Derivative(y(x), (x, 2)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{3}}{15} + 1\right ) + C_{1} \sqrt {x} \left (\frac {x^{3}}{21} + 1\right ) + O\left (x^{6}\right ) \]