Internal
problem
ID
[6843]
Book
:
Advanced
Mathematical
Methods
for
Scientists
and
Engineers,
Bender
and
Orszag.
Springer
October
29,
1999
Section
:
Chapter
3.
APPROXIMATE
SOLUTION
OF
LINEAR
DIFFERENTIAL
EQUATIONS.
page
136
Problem
number
:
3.48
(c)
Date
solved
:
Sunday, March 30, 2025 at 11:24:17 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using series method with expansion around
Order:=6; ode:=x^3*diff(diff(y(x),x),x)+y(x) = 1/x^4; dsolve(ode,y(x),type='series',x=0);
ode=x^3*D[y[x],{x,2}]+y[x]==1/x^4; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 2)) + y(x) - 1/x**4,0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE x**3*Derivative(y(x), (x, 2)) + y(x) - 1/x**4 does not match hint 2nd_power_series_regular