Internal
problem
ID
[6833]
Book
:
Advanced
Mathematical
Methods
for
Scientists
and
Engineers,
Bender
and
Orszag.
Springer
October
29,
1999
Section
:
Chapter
3.
APPROXIMATE
SOLUTION
OF
LINEAR
DIFFERENTIAL
EQUATIONS.
page
136
Problem
number
:
3.24
(f)
Date
solved
:
Sunday, March 30, 2025 at 11:24:01 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=sin(x)*diff(diff(y(x),x),x)-2*cos(x)*diff(y(x),x)-sin(x)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=Sin[x]*D[y[x],{x,2}]-2*Cos[x]*D[y[x],x]-Sin[x]*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x)*sin(x) + sin(x)*Derivative(y(x), (x, 2)) - 2*cos(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE -y(x)*sin(x) + sin(x)*Derivative(y(x), (x, 2)) - 2*cos(x)*Derivative(y(x), x) does not match hint 2nd_power_series_regular